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The development of synthetic receptors for small molecules or Scheme 1
ions rivaling the binding efficiencies of proteins is a long-standing sT_Fs  s{Fs
challenge. Traditionally, the approach to such receptors has involved i A
an iterative process of design, synthesis, and assessment of affinity. Q g O O O O o s{}s
With the advent of dynamic combinatorial chemistgn additional R L o -
tool has become available that merges synthesis and affinity O <3 s § bo
screening into a single process. In brief, dynamic combinatorial e 5 h
libraries (DCLs) are formed by linking building blocks together S
using reversible bonds causing all members of a DCL to interconvert
continuously, forming an equilibriur_n mixture. AQdi_tion of a guest the presence of oxygen from the air results in the formation of a
to a DCL of potential receptors shifts the equilibrium toward the DCL that contains potential receptors in which two peptide rings

receptor that binds the guest most efficiently. Since this concept are separated by different dithiol-derived spacers. Note that, using

was flfrzt articulated g‘ 199€_Ss,levr:aral_exarfnpleﬁ o_l;the_fgucgessfu(lj this approach, compounds containing a combination of two or more
use of dynamic combinatorial chemistry for the identification an spacers will also be formed. Addition of an anionic guest to this

synthesis of covalent receptors have been repdrted. DCL should then lead to the amplification of good binders.
We prepared disulfid® from a derivative ofl containing one

fquﬂ (Qjﬂ W(LNQe to_sylated R hydroxyproline_suburr"rtby _reaction with potassil_Jm
v Y v Y W] . thioacetate followed by basic hydrolysis of the acetyl group in the
~ H TO ~ H TO _CO( H = presence of oxygen. Preliminary binding studies confirmed 3hat
d&\ N\> C; NJ-‘-x N P is not a good receptor for iodide or sulfate anios € 10° M~2).
D O N . UD/O O&(-_N,J 'S Because this compound is poorly soluble in highly aqueous
(-\é"w‘f (-\O”‘N N—‘o(Q solutions, DCLs were made by dissolviB@nda—f in a 2:1 (v/v)
. 2 xe _NMH_ mixture of acetonitrile and water. Oxidation was performed at pH
coon H o 8—9 and in the presence of air over a period of 7 days. During this
/_(—SOsNa /_(‘OH /@ V@y 3 x= —s-s— time, the residual thiols mediate reversible disulfide exchange,
HSsH K SH s SH S sH S~ ensuring that the final library composition is under thermodynamic
aHooc oo ) ¢ d Saxs e e contrc_;l.6b Figure 1a shows the HPLC trace of a disulfide library
. HS\)I\N/\/NY\SH o x- _S_S/—(S__S_ rc_esult_lng from mixing 1 equiv 08_ WI'Fh 0:33 equiv of each of the
s ‘b Z7 H o six dithiols a—f. The product distribution is dominated by the
e f dithiol spacers | 3¢ x= _S_SQS_S_ starting disulfide3 as expected from the thermodynamic preference

to form dimeric rather than higher-order structufésxposure of

. o . the DCL to Kl or K;SO, resulted in the marked amplification of
The work described herein is based on the observation by ON€hree different receptors (Figure 1b and c). Similar studies using

of us that the neutral cyclic hexapeptidebinds anions such as
halides and sulfate in highly competitive aqueous solvent mixtures.
Structural investigations revealed that sandwich-type 2:1 complexes

are formed, in which the anions are bound by six hydrogen bonds .\ "y sing electrospray ionization mass spectrometry, structurally
between two interdigitating cyclopeptide rings. In subsequent work, assigned to disulfide8a, 3b, and 3¢, incorporating the smaller
these aggregates could be stabilized by covalently linking two dithiols spacers, b, andc, respectively. We have focused 8b
peptide units together via adipic acid to give rece@8rDesign and 3c as these are more strongly amplified thaa Both
of the linker was based on the crystal structure of the iodide complex compounds were isolated efficiently from a second-generation
of 1.4 Here, we report how dynamic combinatorial chemistry can biased dynamic library made from equimolar amount8 ahdb
be usgd to.opFimize the linking uniF, result.ing in two new recept.ors or ¢ in the presence of an excess of an anionic temgl&tgure 2
that bind iodide "’_m_d_ sulfate anions with, for neutral species, shows how the introduction of guest shifts the composition of these
unprecedented a_fflnltles. ) N . . biased libraries to producgb and3cin 63% and 77% yield. The
Our approgch is based on .re.vers.|b|e _d|su.lf|de.chenﬁsmyj. 1S only significant side product is starting mater@&lwhich can of
summarized in Scheme 1. Mixing disulfi@with dithiols a—f in course be recycled.
t University of Cambridge. Next, we compared iodide and sulfate complexation of receptors
¥ Heinrich-Heine-Universita 3b and 3c obtained using dynamic combinatorial chemistry with

KBr resulted in a reduced amplification of the same set of
receptors, whereas NaCl and KF had no effect on library
composition. The amplified compounds were isolated using HPLC,
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Figure 1. HPLC analysis of a DCL made by mixing (1.33 mM) with

ion,1%athis effect is much reduced, and the enthalpy change upon
binding becomes significant. When comparing recep8irsand
3cwith 2, the improved affinity of the former results predominantly
from a more favorable enthalpy change upon binding. One possible
explanation could be that the new receptors form stronger or better-
aligned hydrogen bonds with the anion, although we cannot exclude
that the more favorable enthalpy of complexation arises from, for
instance, different conformations of the unbound state3bobr

3cin comparison t®.

In summary, we have shown that dynamic combinatorial
chemistry can be used to optimize the binding properties of bis-
(cyclopeptide)2 toward anions in aqueous solution. Two new
receptors were obtained with, for this class of neutral compounds,
unprecedented binding efficiencies. Our results demonstrate that
dynamic combinatorial optimization of designed receptors can be
a powerful strategy, bringing synthetic receptors with efficiencies

a—f (0.44 mM each) in the absence of guest (a) and in the presence of 10approaching those of proteins one step closer.

mM KI (b) or 10 mM K3S0O; (c) showing amplification of receptoa—
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Figure 2. HPLC analysis of biased DCLs made by mixi8d1.33 mM)

with b (1.33 mM) in the absence of guest (a) and in the presence of 10
mM KI (b). HPLC trace of the DCL made fror@ (1.33 mM) andc (1.33

mM) in the absence (c) and in the presence (d) of 10 my8@®. Libraries

in the absence of guest showed signs of precipitation aft& @ays.

Table 1. Association Constants, Gibbs Energies, Enthalpies, and
Entropies of Binding of Kl and K,SO4 to Receptors 2, 3b, and 3c?

Ka AG® AH° TAS®

Kl 2 3.3x 10° —20.0 —4.3 15.7
3b 29x 10¢ —25.5 —20.7 4.8

3c 5.6x 10* —27.1 —134 13.7
K2SOy 2 2.0x 1P —30.2 10.7 41.0
3b 5.4x 10° —38.4 1.8 40.1
3c 6.7 x 10° —39.0 3.7 42.7

aRecorded in 2:1 (v/v) acetonitrile/water at 298 K; binding constants in
M~ and energies in kJ mot.
that of the previously designed recep®otn the'H NMR spectrum,
the characteristic downfield shift of the &) signals of3cis visible
in the presence of sulfate, indicating that the mode of interaction
of this receptor with the anion is similar to that2f Quantitative
binding studies were carried out in 2:1 (v/v) acetonitrile/water
mixtures using isothermal titration microcalorimetry (ITC). This
technique provides the complex stoichiometry, which was invariably
1:1 for all host-guest pairs described here, as well as the binding
constants and enthalpies from which the entropies of binding can
be calculated. The results show tf&it and 3c bind sulfate and
iodide anions an order of magnitude more efficiently than dbes

(Table 1). As far as we are aware, these binding constants are the

highest obtained thus far for the complexation of anions by a neutral
receptor in aqueous solutiéh.

Thermodynamic analysis of the binding shows some interesting
trends. For all receptors, sulfate binding is strongly entropy driven,
suggesting that liberation of solvent from around the sulfate anion
is the major driving force. For the less strongly solvated iodide
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